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ABSTRACT

The problem under consideration is that of estimating simultaneously the
differences between the means of p > 2 test treatments and the mean of a
control treatment when the population variances of all p + 1 treatments are
known. Tables are given which permit the experimenter to find the minimal total
number of experimental units, and the optimal allocation of these units among
the p + 1 treatments, in order to make one-sided or two-sided confidence
interval estimates of the differences of interest. These intervals achieve a
specified joint confidence coefficient 1l-a for a specified allowance or
"yardstick" associated with the common width of the intervals. The computations
for these tables are based on the results of Bechhofer (1969) for one-sided

comparisons, and Bechhofer and Nocturne (1972) for two-sided comparisons.

Key Words and Phrases: Multiple comparisons with a control, Dunnett's procedure,

optimal allocation of observations, one-sided comparisons, two-sided comparisons,

joint confidence coefficient, completely randomized design.
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1. INTRODUCTION

The problem of comparing simultaneously p > 2 test treatments with a
control treatment arises frequently in applied research. Dunnett (1955),
(1964) considered this problem and provided constants necessary to make joint
100(1-a) percent confidence statements (either one-sided or two sided)
between the mean of each of the test treatments and the mean of the control
treatment when the common variance of the p + 1 treatments is unknown.

An important design decision in this problem is that of how to allocate
the experimental units optimally among the test treatments and the control
treatment wheﬂ the p + 1 variances are known and possibly unequal. Bechhofer
(1969) (hereinafter referred to as Bl) gave a solution to this problem for
one-sided comparisons; this solution is globally optimal if the variances of
the p test treatments are equal, and optimal in a restricted sense if these
variances are unequal. Bechhofer and Nocturne (1972) (hereinafter referred
to as B2) generalized these results to two-sided comparisons. Bechhofer
and Turnbull (1971) gave a globally optimal solution to this problem for
one-sided comparisons when the p test variances are known and unequal.

Only small illustrative sets of tables of optimal allocations
(all for p = 2) were given in Bl and B2. In the present paper we give
an extensive set of tables for p = 2(1)10 both for joint one-sided or joint
twc-sided comparisons based on the formulae given in Bl and B2. (See
Remark 2.2 for the case p = 1.) For such comparisons these tables can be
used to determine the smallest total number of observations necessary to
guorantee selected confidence coefficients (0.75(0.05)0.85, 0.99) for given
specified allowance or “'yardstick" associated with the common "width" of the
confidence intervals; the tables also tell how to allocate these observations

optimally to the p + L treatments.




Remark 1.1: The present paper (and all of the aforementioned papers) deals with

the case in which a completely randomized design is to be employed. However,

many practical situations may require the blocking of experimental units. If

the block size is large enough to accommodate one replication of all of the test
treatments and additional control treatments as well, then the optimal allocations
in the present paper can be used. 1If the blocks have a common size

k <p+1l, i.e., if the p + 1 treatments are to be compared in incomplete
blocks, then entirely new considerations are required to determine the optimal
incomplete block design. This problem is considered in Bechhofer and Tamhane
(1981).

In Section 2 we introduce our notation and pose the optimal allocation
problem both for one-sided and two-sided comparisons. The tables along with an
explanation of how they are to be used are given in Sections 3 and 4. Section
5 quantifies the loss incurred if equal allocation is used instead of the
optimal allocation. The formulae used in the computation of Tables 1 through 9,

and details of the computations are given in the Appendix.

2. NOTATION AND STATEMENT OF THE OPTIMAL ALLOCATION PROBLEMS

Let the treatments be indexed by 0,1,...,p with 0 denoting the control
treatment and 1,2,...,p denoting the p > 2 test treatments. We assume that
the observations Xij (j = 1,2,...) on the ith treatment are normally dis-
tributed with unknown mean ; and known variance Gi (0 21 2p), and that

all observations are mutually independent. Based on N, 21 observations on

the ith treatment (0 < i < p) it is desired to make either

(I) A 100(1-a) percent joint one-sided confidence statement of the form

{uo-ui_,gxo-xi'rd(l;ls__p)}, (2.1)




or

(II) A 100(1-a) percent joint two-sided confidence statement of the form

{xg =% —dsug-w 2x -x, +d (Q=igph (2.2)

In (2.1) and (2.2), ;i is the observed value of the random variable

Ns
- i
X. = 1 xij/Ni (0 <1 <p), and d > 0 is a specified allowance,

i .
j=1
The optimal allocation problem is that of finding the allocation vector
(No,Nl,...,Np) which for known (05,02,...,0§) and specified 1-a and 4,
p
minimizes the total sample size N = 2 Ni subject *o
i=0
P{uo-ui;xo-xi+d (1<i<gp)l>21-n (2.3)
for one-sided comparisons, and
P{xo-xi-d;uo-ui;xo-xi+d (l<igp)l 21 -a (2.4)

for two-sided comparisons. For both cases we denote the optimal allocation by

- |%
(NO,Nl,...,Np) and the smallest total sample size by N = z 1. (the partic-
i=0 -

ular case under consideration being clear from the context).

-~ A b

Remark 2.1: This same optimal allocation (No,Nl,...,Np) maximizes the joint

confidence coefficient for known (cg,ci,...,og) and specified total sample size

P .
N = Z N. and d.
i
1=0

Continuous approximations to the probabilities (2.3) and (2.4) are

obtained in Bl and B2, respectively, by letting

P
nenslow @sis, 2.5)
i=0

and regarding the y; as nonnegative continuous variables satisfying

p
E Y. = 1. The solutions given in Bl and B2 give optimal allocations

P N R g gy v il



for one-sided and two-sided comparisons under the restriction that the stan-

dard errors oi/ﬁﬂ_ (1 £i < p) of the test treatment means are equal,

. 2 _ 2 e oy oal . . . 2 _ 2 2
i.e., oi/yi-oj/yj i #3351 <i,j £p); if 0, =0, = ... -op, then the

solutions give globally optimal allocations.
Under the stated restriction and using the continuous approximation, the

probabilities (2.3) and (2.4) can be shown for given p to depend on

2 2 2
(00’01""’0n)’ N and d only through Yo»

by

A= dfﬁyoo
and

p

2 2

B = ( z oi)/oo.
i=1

For given p and B, and specified 1l-a the optimal solutions which we denote

by (yo,A) are uniquely determined. The simultaneous equations which yield

these solutions are given in the Appendix.

(2.8)

(2.7)

Remark 2.2: It should be noted that for p = 1 the globally optimal allocation

for one-sided and for two-sided comparisons is OO/NO = cl/Nl. Then

N = {(o. + 0,)z /d}2 and N, = No,/(o. + 0.) (i = 0,1) for one-sided com-
0 1"a i i 0 1

parisons, the same expressions holding for two-sided comparisons with Zo/2

replacing z ; here 2z is the upper a-point of the standard normal distri-
a a

bution.

3. DESCRIPTION OF THE TABLES

Tables 1 through 9 give values of (YO,A) both for one-sided and

two- sided comparisons for p = 2(1)10, respectively. The tabulated values of

Y, Aare correct to within one in the fourth decimal place while the tabulated

0

values of X are rounded up in the fourth decimal place to guarantee a joint

T e e




confidence coefficient > l-a for the tabulated value of YO' For each
value of p the tabulations are made for 1l-a = 0.75(0.05)0.95, 0.99 and

B = p/2, p, 3p/2 and 2p. From (2.7) we see that the tables can be used for

the special case Ui = .. 0= 05 = 02 (say) (in which case the allocations are
. 2 2 .

glolhally optimal) when o = cco for ¢ =1/2, 1, 3/2, 2. In particular, the

8 = p column can be used for the special case og = oi = ... 0= oi.

An examination of the tables shows that for fixed p, B and 1-a, we have

~ ~

Yo and X in the two-sided case always greater than the corresponding Y, and

~

A, respectively, in the one-sided case. In both cases for fixed p and B we
have ;O increasing with 1l-a and approaching the limit 1/(1 + V8) as l-a
approaches unity (and hence ;O/;i ) og/ci for 1 < i <p). This limiting
result has been proved analytically in Bl and B2 for the one-sided and two-
sidrd cases, respectively. For cg = ci = ... 0= 0; this gives the limiting
result that ;O/;i > /p (1 <i <p) which leads to the recommendation of

Dunnett (1955), pp. 1106-1107 and (1964), pp. 486-u487.

4, USE OF THE TABLES

S

The tables of (;O,X) are to be used as follows: p and oi (0 <1 <p)
are given as data of the problem; these determine B8. The experimenter specifies
d, i.e., his allowance, and his one-sided or two-sided joint confidence coef-
ficient 1-a. Then p, B, and his one-sided or two-sided 1-a determine
(;0,;). The smallest total sample size ﬁ is then the smallest integer >
(i oo/d)Q. The optimal allocations are given by &0 = ;0& (to the nearest
integer) and ﬁi = (&—&0)05/803 (to the nearest integer) for (1 < i < p);

these approximate integer allocations which were obtained by using the con-

tinuous approximations will be very close to the exact integer allocations

if N 1is5 large.

gy

e =




Optimal allocation

and associated )\ to achieve a given joint

Table 1

Y

on the control (YO)

confidence coef{ficient 1l-a

p =2
l1-a
" p/2 p 3p/2 2p
Losid 0.4245 0.3519 0.3115 0.2841
-sided) 5 607y 2.4818 2.8420 3.1441
0.7
2-sided| ©0.4638 0.3868 0.3435 0.3141
2.9007 3.5403 4.0266 4 5348
l-sided| 0.4417 0.3666 0.32u6 0.2961
2.3226 2.8556 3.2608 3.6009
0.80
2-sided| 0.4691 0.3908 0.3468 0.3169
3.1474 3.8352 4.3588 4.7986
l-sided| ©-4559 0.3788 0.3354 0.3060
2.6885 3.2904 3.7486 4.1334
0.85 oo sidedq] 0-4745 0.3950 0.3503 0.3198
34441 4.1897 4.7581 5.2357
) 0.4683 0.3893 0.3448 0.3146
l_‘
sided) 371181 3.8376 4.3631 4.80u8
0000 cideq] 0-4802 | 0.3985 | 0.35u¢ | 0.3231
3.8298 4.6506 5.2771 5.8039
Locideq| 0-4801 0.3992 0.3536 0.3225
= 3.8298 4.6510 5.2780 5.8053
0. sided| 0-4866 0.4046 0.3583 0.3268
4.4228 5. 3600 6.0763 6.6791
| uideq! 0-4916 [ 0.4085 0.3616 0.3296
side | 5.1150 6.189u 7.0114 7.7036
0991 g 0.4939 0.4103 0.3630 0.3309
e 5.5882 6.7571 7.6520 8.4058
1/(1 + V&)
which is 0.5000 0.4142 0.3660 0.3333
lim v, for
(1-a)~1

E/The upper entry in each cell of the body of the table is
Y A

Yo

and the lower entry is




Optimal allocation

Table 2

«n the control (YO)

and ascociated X to achieve a given joint

confidence coefticicent 1l-a

P =3
I3
1-a
p/2 P 3p/2 2p
Losideq| ©-3567 0.2920 0.2568 0.2333
side 2.6508 3.3507 3.8812 4.3271
0.7% > oided| 0-4032 0.3322 0.2931 0.2669
-side 3.6100 4,4951 5.1675 5.7314
. 0.3088 0.2713 0.2ubk4
1-sided 0.3766 .
st S 9g0n 3.7561 4.3378 4. 8259
0.80
-sided| 0.4099 0.3371 0.2971 0.2702
3.8746 4.8148 5.5299 6.1301
l-sided| 0.3936 0.3227 0.2837 0.2576
3.3832 4.2266 L.B8682 5.4067
0.85 o_sided| 0-4168 0.3423 0.3013 0.2738
StAedl ) 1928 5.1989 5.965L 6.6092
Tl laigea| ©-u089 0.3353 0.29u8 0.2675
e 3.8757 4,8186 5.5366 6.1398
0O deq| 0-4241 0.3479 0.3059 0.2777
T 4.6057 5.6986 6.5320 7.2326
Locidedq! 0-4240 0.3475 0.3053 0.2770
v 4.6059 5.6993 6.5336 7.2350
0.9° o-sided| 0.432u 0.3543 0.3112 0.2822
5.2417 6.4690 7.4064 8.1950
[}
L-sideq' 0-4389 0.3591 0.3151 0.2856
side 5.9855 7.3725 8.4332 9.3263
0991 ideq| 0-4u20 0.3613 0.3169 0.2871
41 5.4953 7.9931 9.1395 10.1049
1/(1 + VB)
which is 0.4495 0.3660 0.3204 0.2899
Hm v, for
(1-a)>1

l/The upper eniry in cach cell of the body of the table is
A

;0 and the lower entry is

|
i
i




Table 3
1/ -
Optimal allocation on the control (Yo)
and associated X to achieve a given joint

confidence coefficient 1l-a

p=u
8
l-a
p/2 p 3p/2 2p
: Losideq| 0-3163 | 0.2570 0.2251 0.2040
‘ side 3.1961 | 4.0932 L7742 5. 345U
0.7% posided| 03645 0.2978 0.2617 0.2376
4.2095 | 5.3084 6.1432 6.8435
1-sided| 0.3366 | 0.2735 0.2395 0.2169
3.5555 | 4.5245 5.2607 5.8785
: 0.80 »_sided| ©0-3716 | 0.3031 0.2659 0.2411
; 4.4888 | 5.6486 6.5307 7.2711
: l-sideq| ©0-3543 | 0.2879 0.2521 0.2281
3.9706 5.0246 5.8263 6.14994
0.8%
g-sided| ©0.3791 | 0.3085 0.2703 0.2u48
4.82ub4 | 6.0574 6.9963 7.7850
" 0.3706 | 0.3011 0.2634 0.2383
I-sided| "[q04 | 5.6535 6.5304 7.2836
0.30
o-sided| ©.3870 | 0.31uu 0.2750 0.2488
5.2607 | 6.5894 7.6026 8.4553
l-sided| ©0-3868 | 0.3139 0.2743 0.2480
5.2609 | 6.5904 7.6047 8.4575
0.95
2-sided| 0.3%60 | 0.3211 0.2805 0.2535
5.9326 7.4107 8.5396 9.4894
1-sid 0.4031 | 0.3263 0.2846 0.2569
sided|  1-0757 | ¢l3782 9.6432 | 10.7100
0.99 o sideq| 0-4084 | 0.3286 0.2865 0.2585
7.2602 | 9.o412 |10.u0u3 |11.5523
1/(1 + /B)
which is 0.4142 | 0.3333 0.2899 0.2612
lim ¥y, for
(1-a)+1

; 1 )
R —/The upper entry in each cell of the body of the table is

;O and the lower entry is )




Optimal allocation

and associated

Yy

A to achieve a given joint

Table &

on the control (Yo)

confidence coefficient 1l-a

p=>5
l-a
p/2 P 3p/2 2p
l-sideq| ©-288% 0.2331 0.2036 0.1842
' 3.6806 4.7562 5.5731 6.2583
0.7
| 2-sided| ©.3367 0.2735 0.2395 0.2170
4.7403 6.0322 7.0138 7.8374
l-sided| ©-3086 0.2493 0.2176 0.1967
4.0569 5.2096 6.0857 6.8210
0.80
2-5ided| 0.3u40 0.2787 0.2u37 0.2205
5.0325 6.3901 7.4229 8.2830
l-sideq| 0-3263 0.2635 0.2299 0.2076
4.4911 5.7351 6.6817 7.4764
.85
08 ideq| ©0-3516 0.2842 0.2u81 0.2241
5.3835 6.8203 7.91u48 8.83u42
1-sided| 0.3u28 0.2766 0.2u411 0.2176
5.03u4 6.3961 7.4334 8.3050
0.90
2-sided| 0.3597 0.2901 0.2528 0.2281
5.8397 7.3805 8.5556 9.5434
l-nideq| ©-3594 0.2896 0.2521 0.2273
h 5.8401 7.3819 8.5582 9.5475
0.4
2-sided| 0.3690 0.2969 0.2583 0.2327
6.5430 8.2463 9.5473 | 10.6420
l-5ided| 0.3762 0.3021 0.262u 0.2361
7.3681 9.2662 | 10.7182 | 11.9406
0.99 P-sideal| ©-3796 0.30k44 0.26u42 0.2377
T 7.9354 9.9699 11.5272 | 12.8389
/¢ + /B)
which is 0.3874 0.3090 0.2675 0.2403
1lim ' for
(1-a)+1

1
—/The upper entry in each cell of the body of the table is
A

Yo

and the lower entry is




5 10
Table 5
. Y - !
Optimal allocation on the control (VO) f
and associated A to achieve a given joint |
confidence coefficient 1-a ?
P=6 *
8 |
l-a !
p/2 p 3p/2 2p '
i 0.2677 0.2154 0.1878 0.1696 k
I-sided| "o 5.3627 6.3052 7.0960 5
0.75 ‘
N s sided| 0.3154 0.2549 0.2227 0.2014
5.2230 6.6925 7.8095 8.7u469
-si 0.2874 0.2311 0.2013 0.1816 ‘
1-sided) ,'5736 5.8357 6.8410 7.6848 !
0.80 ‘
2-sided| 0-3227 0.2601 0.2268 0.20u8 \
5.5266 7.0663 8.2380 9,2218
1-sided| 0.3050 0.2u451 0.2132 0.1922
4. 9646 6.3838 7.4639 8.3710 !
08 4eq| 0-3303 0.2655 0.2311 0.2084 f
5.8913 7.5156 8.7532 9.7930 .
l-sided| 0.3215 0.2580 0.2242 0.2020 \
5.5289 7.0734 8.2502 9,2391
0.90 R
2-sided| 0.338u 0.2714 0.2358 0.2123
6.3655 8.1010 9.4249 10.5380 :
L-sided| 0-3381 0.2708 0.2350 0.2114 5
a 6.3659 8.1027 9.4282 10.5429 §
0.9! .
| o-sided| 0.3477 0.2781 0.2411 0.2168 !
7.0968 9.0067 | 10.u658 11.6936 ,
H
l-sided| ©0-3551 0.2832 0.2u51 0.2201
7.9560 10.0755 11.6970 13.0624
099 ideq| 0-358% | 0.2855 | 0.2469 0.2216 1
8.5476 10.8140 | 12.5493 | 14.0108 '
1/(1 + /B) !
which is 0.3660 0.2899 0.2500 0.22u40
lim y, for
(l-a)+1
1/ .
The upper entry in cach cell of the body of the table is
Y, and the lower entry is A




Optimal allocation

and associated A to achieve a given joint

Table 6

on the control (Yo)

confidence coefficient 1l-a

p =7
l-a
p/2 P 3p/2 2p
) 0.2513 0.2016 0.1754 0.1583
l-sided} 320 5.9265 6.9865 7.8761
0. 7% 2-sided| 0-2983 0.2402 0.2094 0.1891
5.6693 7.3047 8.5487 3.5320
l-oided| 0.2706 0.2168 0.1885 0.1698
4.9366 6.4170 7.5431 8.4886
0.80
7-sided| 0.3055 0.2u52 0.2134 0.1924
5.9833 7.6929 8.9942 10.0871
l-sided| ©-2880 0.2304 0.2000 0.1801
i 5.4027 6.9855 8.1905 9.2026
,H:
0 2-sided| 0-3130 0.2506 0.2176 0.1959
6.3604 8.1597 9.5308 10.6830
. 0.3042 0.2u31 0.2107 0.1895
1-sided
stded) 5 9860 7.7010 3.0081 | 10.1056
0.90
2-sided| 0-3211 0.2563 0.2221 0.1997
6.8509 8.7680 | 10.2307 11.4607
. 0.3208 0.2557 0.2213 0.1988
1-sided| g 5515 8.7700 10.23u5 11.4663
0.95 2-sided| 0.330u 0.2629 0.2273 0.2040
n 7.6079 9.7101 11.3165 12.6683
l-sided| 0.3377 0.2679 0.2312 0.2072
8.4982 10.8236 12.6029 14.1013
0.99 2-sided| 0-3410 0.2701 0.2329 0.2086
9.1120 11.5941 13.4947 15.0956
1/(1 + /)
:?;°$ Y | 0.3u83 | 0.2743 | 0.2358 | 0.2109
0
(1-a)-1

1
—/Thc upper entry in cach cell of the
A

Yo

dand the lower entry is

body of the table is

11
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Optimal allocation

e

and associated

Table 7

A to achieve a given joint

on the control (Yo)

confidence coefficient 1l-a
p=38
l-a
p/2 p 3p/2 2p
l-sided| ©-2380 0.1904 0.1654 0.1491
4.9161 6.4561 7.6273 8.6103
0.75
l aosided| 0-2841 0.2280 0.198Y4 0.1790
6.0870 7.8787 9.2416 | 10.3857
1-sideal ©0.2569 0.2052 0.1780 0.1603
5.3328 6.9627 8.2030 9.2u44
0.80
2-sided| 0.2912 0.2330 0.2023 0.1822
6.4105 8.2802 9.7038 | 10.8000
l-sidedl 0-2739 0.218u4 0.1893 0.1702
5.8129 7.5499 8.8727 9.9840
L85
08 cidea| 0-2987 0.2382 0.2064 0.1856
6.7991 8.7630 | 10.2601 | 11.5182
l-sidea| 0-2899 0.2308 0.1997 0.1793
6.4135 8.2892 9.7192 | 10.9211
.9
00 ideq| ©0-3066 | 0.2438 | 0.2108 | 0.1892
7.3046 9.3926 | 10.9860 | 12.3260
L-sided| 0.3083 0.2432 0.2100 0.1883
’ 7.3053 9.3949 10.9904 12.3325
0.9¢
"l 9-sided| 0.3158 0.2502 0.2158 0.1934
8.0853 | 10.3684 | 12.1133 | 13.5818
l-sided| 0.3230 0.2551 0.2196 0.1965
9.00u5 | 11.5233 | 13.u509 | 15.07u43
0.99
2-sidea| 0-3263 0.2573 0.2213 0.1879
9.6389 | 12.3235 | 14.3794 | 16.1112
1/(1 + V/B)
which 1is 0.3333 0.2612 0.2240 0.2000
1im YO for
(1-a)+1

1 .
—/The upper entry in each cell of the body of the table is

;0 and the lower entry is

1z

g e e =

e




1
Table R
1 .
Optimal allocation on the control (yo) |
and associated A to achieve a given joint
confidence coefficlient 1l-a '
P =9
l-a ‘
p/2 P p/2 2p !
S S S F
|-sidey] 0-2269 0.1811 0.1572 0.1416 ,
5.2794 6.9578 B.23u6 4.3066 [
B S :
S gl 0272 0.2177 0.1892 0.1705
' H.4B12 8.401y 9.8977 11.1372 5
— L :
l-oided| ©0-2u53 0.1954 D.1693 0.1523 $
’ 5.7073 7.4742 8.8280 9.7608 b
VSRV N
2-sided| 0.2791 0.2226 0.1930 0.1736 P
6.8135 8.8352 10.3750 11.6685
l-<ideq| ©0-2620 0.2083 0.1802 0.1619
vHaee 6.2002 8.0837 9.5186 10,7042
Ot ideal ©.086u 0.2277 0.196" 0.1769
) 7.2128 9,3331 10.949¢6 12,3084 !
l-sided| ©0:2777 0.2204 0.1903 0.1708 !
’ 6.8170 8.8452 10.3919 11.6971
0.490 - !
2-sided| 0.2942 0.2331 0.2012 0.180u4
7.7324 9.982u 11.7000 13.1uuy
1-4ided| ©.2939 0.2325 0.200u .1795 !
7.7331 9.9851 11.7068 13.1515
0.9%
2-sided| 0.3033 0.0394 0.206: 0.1845
8.5352 10.9897 12,8660 14, LL52
1-sided| ©.3104 0.2u41 0.2097 0.1874
9.u81u 12.1834 14,2515 15.9932
0.99
poided| 0.3136 0.2u63 0.2113 0.1817
10.1351 13.0113 15,0140 17,0699
1/(1 + /R)
whicl is 0.3204 0.2500 0.2139 0.1907
lim y, for
(1-a)»1

] .
—/Thc upper entry in cdch cell of the
o

and the lower entry is A

body of the table is




Table 9
i
1 - 1
Optimal allocation on the contro. (yo) L
and associated A to achieve a given joint 5

confidence coefficient 1l-a ‘
]

p =10
) ‘
l-a ‘
p/2 P 3p/2 2p '
L-sided| ©:217% 0.1731 0.1501 0.1351
-8ldedl ¢ g252 7.4359 8.8138 9.9708
0.74 -
2-sided| ©-2618 0.2089 0.1813 0.1632
6.8558 8.9378 10.5225 11.8532
l-sided| 0.2354 0.1871 0.1619 0.1455
6.0635 7.9712 9.4237 10.6438
0.50
2-sided| 0.2686 0.2136 0.18u9 0.1662
7.1964 9.3633 11.0140 12.4009
l-sided| 0-2517 0.1996 0.1725 0.1548
8 6.5684 8.5919 10.1338 11.4295
0.
? 7-aided| 0-2758 0.2186 0.1888 0.1694
7.6058 9.8752 11.6058 13.0607
—— - —_— -
1-sided| 0-2672 0.2114 0.1823 0.1634 1
TR 9.2003 9.3742 11,0323 12.4263 f
0.0 '
v-sided]| 0.2835 0.2239 0.1930 0.1728 |
8.1385 10.543] 12.3790 13.9232 '
1-sided| ©0-2831 0.2233 0.1921 0.1719
) 8.1393 10.5u461 12.3844 13.9310
0.15 2-sided| 0.292u 0.2300 0.1977 0.1767
8.9621 11.5811 13.5816 15.2663
—— e
l-sided| 0.2993 0.2346 0.201: 0.1795
- 9,9338 12.8102 15.0121 16.8667
0.99 , 0.3025 0.2367 0.2027 3.1808
2-sided
10.6057 13.6643 16.007: 17.9810
1/¢1 + /B)
which is 0.3090 0.2403 0.2052 0.1827
lim Yo for
(1-a)»1

1
-/The upper entry in each cell of the body of the table is

; and the lower cntry {s A\

0




Numerical examples: Suppose that p = 3 and oi =1 (0 i < 3); then

8 = p = 3. If one-sided intervals are desired with d = 0.5 and

l-a = 0.95 then from Table 2 we find that Yy = 0.3475, A 5.6993. Hence

N = [K5.6993)l/0.5}2] = [129.9] = 130 and NO = 46, Nl = N2 = N3 = 28.
2

For the same specification with og =1/2, o = 1 (1 <1< 3) we have

B = 2p = 6 and hence YO = 0.2770, X = 7.2350; thus ﬁ = 105, ﬁo = 30, Nl =

N, = N_ = 25. These calculations give an indication of the sensitivity of the

. . . 2 .
allocations and sample sizes to rather large changes in o, and the ratio

0
2,0 . 2 2 _ 2
oi/oo (1 <i < 3) when o, = 0, = 0.
2

. . 2 .
If the experimenter is prepared to assume that o, =0 (0 <1 <p)
wher~ the actual value of 02 is unknown, and he believes that
2 2

2 2 e s . .
o, 0 20y where ci < 0, are known, then this information can be used in
2

designing the experiment, e.g., acting as if o = 05 leads to a conservative
choice of ﬁ. However, after the experiment has been conducted, when the
results are being summarized, the common unknown 02 should be estimated
using the pooled data, the estimate 52 being based on v = & - (p+l) d.f.
The estimate should then be used with Dunnett's (1955) formulae for joint con-

fidence statements (analogous to (I) and (II) of (2.1) and (2.2),

respectively):

(III) A 100(l-a) percent joint one-sided confidence statement

—

- - 1
{u ~u._5_xo-xi+t\()a)p — + — (1 <i <p)} (4.1)
*Ps N N

0 1

or

(Iv) A 100(l-a) percent joint two-sided confidence statement
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T % - 4'a) S -
{xo X, tv,p,p s - + - Sy -y
0 1
<X -x +t @ of L 42 1< < p)}. (4.2)
=0 1 VsP,yP = =
N, N

(a) (t'(a) ) 1is the upper a equicoordinate point of the p-variate

Here t
VPP VPP

t-distribution (p-variate |t|-distribution) with d.f. v and equal corre-

lations p = N_/(N_4N_); tables of t(a) are given by Krishnaiah and
1 01 V,P,P
Armitage (1966) while tables of t;(;)p are given by Hahn and Hendrickson
? 9

(1971).

5. LOSS FROM EQUAL ALLOCATION ON ALL p + 1 TREATMENTS

It is of some interest to determine how much is lost in terms of increased
sample size if the experimenter uses equal allocation on all p + 1 treatments,

i.e., N, =N = ... =N =N/(p + 1), instead of the optimal allocation. For
(0] 1 p

this purpose we define the relative efficiency, RE = N/N. Here N and N are
the tot.l sample sizes required to guarantee the same joint one-sided (two-sided)

confidence coefficient 1l-a wusing (2.3) (using (2.4)) for given

2 2

(oo,a 02) and specified d when the optimal allocation and equal allo-

170009
cation, respectively, are employed. (Note that RE < 1, and small values of

RL indicate large relative savings by optimal allocation over equal allocation.)
We now determine RE for the important special case oi = o2 (0 i <p).

(Other cases can be determined analogously.) For one-sided comparisons we

have (ignoring the integer restrictions)

- . (a) 2 .
N = 2(9*1){t¢,p,1/g(°/d)} . (5.1)
Thus
2
o1 A ¢ o
RE = 26 | T .2
=, p,1/2




for one-sided comparisons. Here ti?;,l/Q is the upper a-point of the
distribution of the maximum of p equicorrelated standard normal random
variables with common correlation P = 1/2; the values of ti?;,l/Q have been
tabulated for selected p and 1l-a by Gupta, Nagel and Panchapakesan (1973).
For two-sided comparisons tif;,l/Q in (5.1) and (5.2) 1is replaced by

t;ngl/Q where t;£;21/2 is the upper a-point of the distribution of the
maximum of the absolute values of p equicorrelated standard normal random
variables with common correlation 0 = 1/2; the values of (t;fgzl/gf have been
tabulated for selected and 1l-a by Krishnaiah and Armitage (1965).
Entries for v = 60 .. the tables of Hahn and Hendrickson (1971) can be used

- N T a
as conservative approx mations to t;(p)l/2'
) 2

Some represe-tative RE - values for one-sided comparisons (similar

results would be cbtwined for two-sided comparisons) are given in the following

table. Values of RE for One-Sided Comparisons

0.75 0.9986 0.9741 0.9390

0.9 0.9818 0.9101 0.8433

1.9y 0.9759 0.8890 0.8121

It can be seen that the relative savings using the optimal allocation increase

with p and 1l-a as would be expected; also, for fixed p and 1l-a the

difference N - N 1is directly proportional to (O/d)g.

17
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APPENDIX

Formulae for optimal allocation, and details of computation

A.1 Formulae for optimal allocation for one-sided comparisons (Reference Bl):

Let #(+) and ¢(+) denote the standard normal distribution and density

function, respectively, and let Qk(. | p) denote the equicoordinate k-variate

standard normal distribution function with common correlation p. Then the

(%O’X) given in Tables 1 through 9 are the unique solutions of the follow-

ing simultaneous equations (A.1) and (A.2):

[ e EHY?) 400 = 1-a, (A1)
- 00 'Y

[(1-8)v2-2y+1 Jro_; (] (1-1)/{2(1-Y)+v8}] (A.2)

]

_ (p-1)y(1-v)8 1-y+yB ,1/2 | . 1-y
2(1-v)+yB MTMP-? [1{3(1-Y)+YB} ,3(1-Y)+YB]

where

B(1-v) 1/2
T =AY Y [1-y+yB1[2(1-y)+yB8] .

A.2 TYormulae for optimal allocation for two-sided comparisons (Reference B?2).

Here the (§0’i) given in Tables 1 through 9 are the unique solutions
of the following simultaneous equations (A.3) and (A.u4):
o0

/. {¢[<:;é+-x><igl)1/21 -0 [ - ) (DY 21Pasco = 1, (A.3)
Y Y




2
ALQ-BYS-2rAL10) (o gy pa(yoy) 712

i {6( D —o[r (2L *+YBy 9y 4 _
(1-yrye)2 12(-y)+ys1t? 2 B
where
D) = ¢ (87, T, [(1-v)/{2(1-v)+v8]),
Dy = 0 p(-8,T5s T, |(1-¥)/{3C1-v)+ve]),
D, = ¢p_2(—13, Tal(l'Y)/{3(l-Y)+Y8}),
T. =T, T. = r[(l-Y+YB)/{3(l-Y)+YB}11/2 T, = A T
1 » Ty > '3 1 2
Al = {2(1-yv)+vyB}/¥v8B, A2 = {4(1-y)+yB}/vyB, and

A

¢k(a,b|p) = PlagZ b (1 <1iz<k)} where the Zi are standard

1

normal with corr{Zi,Zj} p for i#73j,1<1i, J <k,

A.3 Details of computation

The IMSL subroutine ZSYSTM was used to solve the pairs of simultaneous
equations (A.1), (A.2) and (A.3), (A.4). The stopping criteria used in
arriving at the final solutions were the following: (i) the difference
between the left hand and the right hand sides of each equation is less than
1 x 10_6 or (ii) in two successive iterations the corresponding trial values
of ;0 and i do not differ in the first six significant digits.

To evaluate a quantity of the form ¢k(a.b|o) (which includes ¢k(b|p)

as a special case for a = - ») the following iterated integral represen-

tation (see equation (2) of Bechhofer and Tamhane (1374)) was used:

19

(A.4)




- ]

1/2 1/2
o (a,bo) = [ (o]X0 51 o120 1o | ¥de(x).

el 1/2

(1-p) y1/2

(1-p

For p = 2 the quantity op_l (a,b|p) reduces to ¢(b)-#(a) and
Op_Q(a,blp) = oo(a,blo) = 1. Thus the evaluation of the various expressions
is particularly simple for p = 2.

To evaluate &(+) the formula (26.2.17) given in Abramowitz and Stegun
(1964) was used; this formula is accurate to within + 7.5 x 10-8. The Romberg
quadrature method was used to evaluate the various integrals. All of the
calculations were done on a CDC 6600 computer at Northwestern.

The tabulated values of ¥y are rounded off in the fourth decimal place

0

while the values of A are rounded up in the fourth decimal place (to insure a

joint confidence coefficient 2 l-a).

20
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